
Abstract 
Chest X-rays are among the most commonly ordered 

imaging tests. Applying deep learning techniques to X-ray 

images is a typical application of computer vision in 

healthcare. Nevertheless, using X-ray images alone does 

not always lead to decent and generalizable model 

performances. Combining patients’ clinical reports, which 

contain rich and important patient diagnostic information, 

with X-ray images could give the model more information 

for prediction. As a result, our work will focus on deriving 

and examining the best fusion strategies for implementing 

a multimodal approach with regard to pleural effusion 

prediction. Using X-ray images and clinical text reports, 

we mainly combine VGG16 with DistilBERT to better 

predict the presence of pleural effusion. We propose two 

sets of fusion strategies, namely early fusion, where we 

concatenate the learned vector representations of images 

and texts before classification, and late fusion, where we 

leverage the predicted probabilities from the two 

modalities. Ultimately, we found that the late fusion 

multimodality model with an elastic net regularized 

logistic regression model achieved the best overall 

performance, with an AUC value of 0.9887. On the other 

hand, the early fusion strategy achieved inferior results, 

which indicates that the early fusion strategy that we 

utilized here is not specifically suitable for integrating X-

ray images with clinical text data. 

1. Introduction

Pleural effusion refers to an abnormal accumulation of 

fluid in the pleural space (Light, 2002). It is beneficial to 

diagnose pleural effusion early in time because it can lead 

to medical complications such as difficulty in breathing, 

chest pain, and reduced lung and heart function (Light, 

2002). In addition, the diagnosis of pleural effusion usually 

relies on medical imaging technologies such as X-ray 

imaging (Karkhanis & Joshi, 2012). 

Moreover, in recent years, deep learning techniques 

have been frequently applied to clinical image data to 

improve the accuracy and efficiency of diagnoses. 

Convolutional neural networks(CNNs) have been 

particularly successful in processing clinical imaging data, 

such as X-rays and CT scans (Tang et al., 2020, Kshatri & 

Singh., 2023). Past research has also shown that CNNs can 

be used to accurately classify clinical images and detect 

abnormalities, such as tumors, fractures, and 

pneumothorax, with performance that is comparable to 

human experts (Tang et al., 2020, Rajpurkar et al., 2017). 

In addition, natural language processing techniques based 

on transformer architectures, such as the BERT model, 

have also shown remarkable success in processing 

unstructured textual data, such as electronic health records 

(Alsentzer et al., 2019).  

The ability to process textual data can provide 

complementary information to the analysis of medical 

images. This means a multimodal approach that can 

leverage both image and clinical textual data may provide 

a more comprehensive understanding of patient health 

status and potentially improve diagnostic accuracy. While 

there have been significant advances in both CNN and 

transformer-based approaches, there has been very few 

multimodality model that combines X-ray images with 

clinical texts or reports, which can be quite messy 

sometimes due to clinical abbreviations and text 

modifications due to de-identification purposes. This also 

means there has been very little work on deciding what’s 

the best fusion strategy for combining these two specific 

modalities of data.  

In this paper, we propose two fusion strategies for 

building such a multimodality model. The first method, 

generally categorized as an early fusion approach, 

leverages the features extracted from the images using 

pretrained CNN models and the features extracted from the 

clinical text reports from pretrained transformer-based 

models by concatenating them before the final 

classification layers. This can potentially allow for a better 

modeling of the interactions between the features learned 

from different modalities and a more comprehensive and 

holistic representation of the input data. Another approach, 

generally categorized as the late fusion approach, uses the 

final predicted probabilities from the two models, each 

trained on a different modality, and then further trains these 

output probabilities using an additional generalized linear 

model to obtain our final classification results. This 

approach can potentially preserve the unique 

characteristics and nuances of each modality, which may 

help the model capture fine-grained information specific to 

each modality, thus leading to a more comprehensive 
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understanding of the input data. We will compare the 

performances of these two approaches to determine the 

better fusion strategy for these specific modalities.  

    Lastly, to achieve interpretability in a multimodal 

network is also important. This can enable healthcare 

professionals to comprehend the rationale behind the 

model's discernment of a specific diagnosis. Given that this 

is a computer vision course, we will mainly be focusing on 

generating visual interpretability for our X-ray imaging 

data using techniques such as saliency map and Gradient-

weighted Class Activation Mapping (GradCAM) 

(Simonyan et al., 2013, Selvaraju et al., 2017). 

2.     Related Work 

There have been quite a few attempts of using computer 

vision based approaches and natural language processing 

techniques for obtaining classifications of clinical images. 

Rajpurkar et al. (2017) compared the performance of their 

CheXNeXt algorithm to practicing radiologists on the 

ChestX-ray14 dataset and found that the algorithm 

outperformed the radiologists on certain diseases. In 

addition, natural language processing techniques, 

particularly transformer-based approaches, have also 

shown promising results in clinical text processing. 

Alsentzer et al. (2019) introduced publicly available 

clinical BERT embeddings, which has achieved great 

results on baseline text data and can be used for various 

clinical natural language processing tasks. Wang et al. 

(2020) incorporated domain knowledge into a clinical 

transformer for clinical named entity recognition and 

achieved state-of-the-art performance on benchmark 

datasets, achieving a micro F1-score of 90.8%. Lastly, 

Huang et al. (2020) used multimodal fusion by leveraging 

both CT imaging data and electronic health records data to 

predict pulmonary embolism. Their best performing 

multimodality model, which is a late fusion model, 

achieved an AUC of approximately 0.947 and 

outperformed both their early fusion models and single 

modality models. This paper laid the foundation for 

deploying multimodality models on clinical data of 

different modalities. In short, these works have all shown 

promising results with regard to the techniques that we 

discussed, and they can all help us better understand and 

perfect the use of both computer vision and natural 

language processing techniques for analyzing clinical 

images and texts. 

3.     Methodology 

3.1     Hypothesis and Challenges 

   Given the rich, multidimensional information embodied 

within textual data, we hypothesize that an integrative 

approach, where we combine the analysis of both image 

and text data, may enhance the overall prediction accuracy 

or AUC value compared to just using the image data for 

prediction. 

  To understand what specific words contribute to the 

model's predictions, we initiated a comprehensive review 

of the clinical text reports. These reports, crafted for chest 

X-rays with 13 descriptive labels, cover a wide range of 

pulmonary diseases. Pleural effusion, a common condition, 

features prominently in many reports either as 'pleural 

effusion' or 'no pleural effusion'. However, due to its 

frequent occurrence, the mere mention of 'pleural effusion' 

does not serve as a definitive diagnostic indicator. 

  To decipher the terms that influence the prediction of 

pleural effusion, we undertook a thorough analysis of the 

terms used in its classification. These terms were ranked 

based on their relative frequency, calculated as the 

difference between the frequency of words in reports where 

the predicted label is 1 and those where the predicted label 

is 0. This analysis would help us discern the words that are 

pivotal in shaping the model's predictions, thereby 

informing our approach to processing the textual data. 

3.2     Data 

Our dataset comes from the MIMIC Chest X-ray 

(MIMIC-CXR) Database v2.0.0 and the MIMIC Chest X-

ray JPG (MIMIC-CXR-JPG) Database v2.0.0 (Johnson et 

al., 2019). These data are collected at the Beth Israel 

Deaconess Medical Center in Boston, Massachusetts. The 

datasets include Chest X-ray images from more than 

65,000 patients with over 370,000 chest X-ray images, 

collected over a period of 10 years (Johnson et al., 2019). 

The CXRs were de-identified and labeled with 13 different 

radiographic findings, such as pneumonia, atelectasis, and 

cardiomegaly. The MIMIC-CXR Database also includes 

associated clinical text reports and some other clinical 

metadata such as ViewPosition, which is the orientation in 

which the chest radiograph was taken. The diversity of the 

two datasets will contribute to the development of 

multimodality models for effective detection of pleural 

effusion. 

In addition, the data packages are rather large (around 

5.5TB), so we decided to only consider around 10% of the 

entire database. 

 

3.3     Data Preprocessing 

   Our ultimate goal of data preprocessing is to derive a 

dataframe that contains patient_id, study_id, X-ray image 

(i.e. file path to the image stored in the Google Drive), 

clinical_report, and the label for pleural effusion. 

Consequently, we merged the two datasets using dicom_id 

in order to match and combine the clinical text reports, the 

corresponding JPG images, and the labels. Furthermore, 

we only used Anteroposterior(AP) and 

Posteroanterior(PA) positions of the patients’ X-ray 

images and excluded images that are in lateral positions 

since images in AP and PA positions are the ones that are 



 

 

relatively more commonly used for pleural effusion 

diagnosis (Na, 2014). 

For image pre-processing, we crop the images to smaller 

sizes of 224x224 to make sure all images have the same 

size. For clinical reports, all text data is tokenized by the 

pertained DistilBERT model before being fed into the 

multimodal network. We did a train-validation-test split 

using a ratio of 0.7-0.1-0.2. 

Lastly, the original data have 13 descriptive labels 

indicating 13 common lung diseases and conditions, 

including 'Atelectasis', 'Cardiomegaly', 'Consolidation', 

'Edema', 'Enlarged Cardiomediastinum', 'Fracture', 'Lung 

Lesion', 'Lung Opacity', 'Pleural Effusion', 'Pleural Other', 

'Pneumonia', 'Pneumothorax', and ''Support Devices'. 

Subsequently, we filtered for the data that have a clear 

label(0 or 1) on pleural effusion since the dataset that we 

obtained contains a lot of NAs for the labels. Ultimately, 

we ended up with 8183 valid X-ray images and 

corresponding clinical reports.  

 

3.4     Performance Metrics 

   During training, the performances for all of our models 

will be assessed using accuracy(i.e. validation accuracy). 

The final model’s performance on the test set will be 

evaluated using AUROC values. 

 

3.5     Methods       

  Our study design included the development of two 

varieties of fusion strategies for multimodality models, 

designed to seamlessly integrate textual data from the 

clinical texts with the corresponding chest X-ray images. 

 

3.5.1   Image Analysis 

  For the analysis of imaging data, we utilized pre-trained 

Convolutional Neural Networks (CNNs) to exploit the 

high-level feature representations derived from models 

pre-trained on significantly larger datasets. After 

comprehensive experimentation with various pre-trained 

models, we selected VGG16 as our convolutional base due 

to its superior performance for our specific dataset. To 

enhance our model's ability to generalize, we implemented 

data augmentation techniques such as horizontal flipping, 

rotational transformations, and width/height shifts. 

Subsequent to the pre-trained VGG16 convolutional base, 

we introduced batch normalization, dense, and dropout 

layers to form our classification layers. We used the Adam 

optimizer for model training, alongside binary cross 

entropy as the loss function and an early stopping 

mechanism of patience equal to 15 (Kingma et al., 2014). 

The model with the highest validation accuracy was chosen 

as our final baseline model for X-ray image analysis. 

 

3.5.2   Text analysis 

  For processing clinical textual data, we integrated a pre-

trained transformer-based model: DistilBERT, which is 

known for its compact model size and efficient training 

time (Sanh et al., 2019). We tried to use other larger and 

less compact transformer-based models; however, limited 

by the computational resources at our hands, we weren’t 

able to do so in time. The text data was tokenized using the 

'distilbert-base-uncased' tokenizer, which was 

subsequently inputted into the transformer model. We set 

the maximum token length at 512 to adequately capture the 

content while maintaining computational efficiency. The 

Adam optimizer, with a learning rate of 1e-4 and decay rate 

of 1e-5, was used alongside the binary cross entropy loss 

function. We selected a batch size of 32 to balance model 

performance and computational resources. Similar to the 

image analysis model, the model demonstrating the highest 

validation accuracy was selected as our final model for the 

text modality. 

 

3.5.3    Multimodal Analysis of Images and Texts 

   Our first approach to the multimodal architecture is using 

early fusion of the learned features, where we use the 

output of the encoder part of the DistilBERT model and 

take it as a representation feature and then concatenate with 

the output of the pretrained VGG16 convolutional base 

(after the flatten layer). Subsequently, we added several 

batch normalization layers, dense layers, and drop out 

layers as our classification layers for the early fusion 

approach. 

    Our second fusion strategy, generally recognized as late 

fusion, uses the final predicted probabilities from the two 

models for final prediction, where each model is trained on 

a different modality. After we obtain the predicted 

probabilities, we came up with three ways to further 

process or train these probabilities. The first method is a 

simple averaging of the probabilities produced from the 

two models of the two modalities. The second method 

further trains a linear regression model using the predicted 

probabilities to obtain our final classification results. The 

third method trains a logistic regression with elastic net 

penalty using the predicted probabilities for final 

classifications. We also used GridSearchCV to help us 

locate the best hyperparameters for our elastic net 

regularized logistic regression model. 

 

4.    Experimental Results and Discussion 

4.1      Experimental Results 

  For our baseline imaging model, the VGG16-based CNN 

with data augmentation, it ultimately achieved a test 

accuracy of 84.92% and an AUC of 0.9099. Nevertheless, 

this model consistently overfitted on the training data, 

regardless of the application of data augmentation 

techniques, as shown in Figure 1a. Consequently, this 

indicates that this model lacks a good generalizability to 

unseen data beyond the overfitting point. 

Furthermore, for our early fusion approach towards our 

multimodality model, the validation accuracy appeared to 



 

 

plateau at around 81%, even under elongated training time, 

as shown in Figure 1b. This suggests that the early fusion 

strategy may not be fully capitalizing on the potential 

synergies between the features of the X-ray images and the 

clinical texts to maximize the predictive accuracy. 

Ultimately, this early fusion strategy achieved an AUC of 

0.8791, which is slightly worse than that of our baseline 

model. 

Our late fusion strategy achieved much more success 

compared to the aforementioned baseline approach and the 

early fusion multimodality model. To elaborate, a simple 

averaging of the predicted probability values from both 

models resulted in an AUC of 0.9804. For the regression-

based late fusion approaches, by implementing a linear 

regression using the predicted probabilities, we were able 

to achieve an AUC of 0.9817. Remarkably, when we 

applied a logistic regression model with elastic net 

regularization, the AUC further increased to 0.9887, which 

is also our highest AUC value among all approaches and 

models. These results underline the effectiveness of late 

fusion multimodal learning in harnessing the predictive 

potential of both X-ray images and clinical reports for 

superior model performances. 

All of our results described above are also listed in Table 

1. 

 
Table 1. Different methodologies and their corresponding AUC scores. 

 

 
Figure 1a. Model accuracy plot for VGG16 with data augmentations.  

 

Figure 1b. Accuracy history plot for multimodality model using early fusion 

strategy by leveraging VGG16 and DistilBERT. VGG16(Figure 1a) overfitted 

and early fusion model(Figure 1b) validation accuracy plateaued.  
 

4.2     Interpretability Results 

4.2.1     Images 

  To interpret our vision network, we employed two 

gradient-based methods: saliency maps and GradCAM, 

shown in Figure 2. Both techniques utilize gradients to 

identify important regions within an image. Saliency maps 

calculate the gradient of the network's loss with respect to 

the input image and visualize these gradients as a heatmap 

(Simonyan et al., 2013). GradCAM, on the other hand, 

calculates gradients only for the last convolutional layer 

before the global pooling operation, resulting in a more 

abstract representation of input-output relationships and 

providing a different perspective on the network's 

underlying mechanisms (Selvaraju et al., 2017).  

 
Figure 2. Left: Original images. Middle: Saliency maps overlaid on the 

original images. Right: GradCAMs overlaid on the original images. The 

model sometimes captures the area of the chest and sometimes captures other 

places like medical devices. 
  Both methods above highlighted similar regions. In 

addition, aside from the lung areas, the model sometimes 

pays attention to other regions as well as medical devices. 

While this could be advantageous for diagnosis, it is not 

ideal for model interpretability because the model’s focus 

is not solely on disease locations and related pathology. 

 

4.2.2     Texts 

   In an attempt to get a better idea of the contributions of 

specific words to our model's predictions, we also 

computed the relative frequency of words within the 

clinical reports, shown in Table 2. This measure is derived 

by subtracting the word frequency in reports where the 

label is ‘Pleural Effusion’ from the word frequency in 

reports where the label is ‘Normal’, and vice versa. 



Table 2. Word relative frequency table. Calculated using the following rule: 

the top 10 words that appear the most in reports that are classified as pleural 

effusion compared to reports that are classified as normal, and vice versa. 

architectures used in LXMERT. To be more specific, 

LXMERT uses cross-attention mechanisms that can allow 

for interaction and mutual influence between textual and 

visual modalities (Tan & Bansal, 2019). The LXMERT 

architecture involves three parts, namely an object 

relationship encoder that is a faster R-CNN, a language 

encoder like the pre-trained DistilBERT, and a cross-

modality encoder, which is a transformer architecture that 

allows bi-directional attention flow to integrate text and 

image input (Tan & Bansal, 2019). This architecture could 

potentially help us better model the interactions between 

the features extracted from X-ray images and clinical texts. 

   Lastly, as mentioned in the results interpretability section 

for texts, terms such as ‘right’ and ‘left’ could have strong 

diagnostic values. Nevertheless, it is worth noting that 

these words may not demonstrate the same classification 

power in the context of multi-label pulmonary disease 

prediction task, such as predicting pneumonia and 

pneumothorax, where a mere mentioning of ‘left’ or ‘right’ 

will not be enough to instruct the model to make a specific 

disease prediction. 

The above results indicate that, in our early fusion 

multimodality model, the clinical text data indeed aided in 

the classification of pleural effusion. This is because the 

terms ‘left’ and ‘right’, which are the top two most frequent 

words for a ‘Pleural Effusion’ prediction, are often seen in 

phrases like 'left pleural effusion' or 'right pleural effusion'. 

In contrast, when the early fusion model predicts 

‘Normal’, some of the most frequent words, such as 

‘tortuosity’ and   ‘elongation’, are mainly describing 

other medical conditions, possibly those that do not co-

occur with pleural effusion (Bharadwaj, 2022). 

4.3     Discussion 

  Our best multimodality model used a late fusion strategy 

where the probability outputs of our pretrained VGG16 

model and our pretrained DistilBERT model are further 

trained by a elastic net regularized logistic regression 

model. All the late fusion models achieved higher AUC 

values than those of the image-only models, which means 

the modality of clinical text aided in prediction and that the 

interactions between text and image outputs can improve 

model performances. Nevertheless, the AUC value of our 

multimodality model with an early fusion strategy was the 

lowest out of all the architectures. Consequently, given that 

we applied the exact same classification layer architectures 

for both our multimodal models and image-only models, 

we can reasonably infer that the early fusion strategy that 

we utilized is not an ideal approach for integrating these 

two specific modalities: X-ray images and clinical text 

data. On the other hand, our finding is consistent with 

Huang et al. (2020), where they found that, when dealing 

with clinical images and EHR data, a multimodality model 

using late fusion strategy generally yields better overall 

results than the models that used early fusion strategies do. 

   Furthermore, evidently, the early fusion strategy that we 

applied here appears to be the biggest limitation to our 

model’s performance. As a result, we propose that in the 

future, we can adopt more complex and robust 

architectures that can better combine the learned features 

from clinical text and medical images, such as the 

5.    Conclusion

Overall, our study demonstrated two multimodal fusion

strategies that can integrate clinical text data with X-ray

image data for pleural effusion prediction. We compared

their performances with our baseline VGG16 model and

found that the late fusion multimodality model with an

elastic net regularized logistic regression model has the

best overall performance, achieving an AUC score of

0.9887. On the other hand, the early fusion strategy that

concatenates learned X-ray image features and clinical text

features only achieved slightly worse results than our

baseline model did. Therefore, we can infer that the early

fusion strategy that we utilized here is not suitable for

integrating X-ray images with clinical text data.

Consequently, we have shown that combining textual data

with imaging data in clinical use could aid disease

prediction, but to achieve better results using an early

fusion architecture, a more complex and robust

architecture will be needed. Future study can work on

improving early fusion architectures by identifying the

most effective representations of text data and how the

clinical text information can be integrated with X-ray

images through the interaction and consensus between

them. Furthermore, the generalizability of such models is

unsure and remains an open problem since we have only

shown that clinical text can be supportive to the analysis of

imaging data that are from the same database.
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